Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling.
نویسندگان
چکیده
Chronic high flow can induce arterial remodeling, and this effect is mediated by endothelial cells (ECs) responding to wall shear stress (WSS). To assess how WSS above physiological normal levels affects ECs, we used DNA microarrays to profile EC gene expression under various flow conditions. Cultured bovine aortic ECs were exposed to no-flow (0 Pa), normal WSS (2 Pa), and very high WSS (10 Pa) for 24 h. Very high WSS induced a distinct expression profile compared with both no-flow and normal WSS. Gene ontology and biological pathway analysis revealed that high WSS modulated gene expression in ways that promote an anti-coagulant, anti-inflammatory, proliferative, and promatrix remodeling phenotype. A subset of characteristic genes was validated using quantitative polymerase chain reaction: very high WSS upregulated ADAMTS1 (a disintegrin and metalloproteinase with thrombospondin motif-1), PLAU (urokinase plasminogen activator), PLAT (tissue plasminogen activator), and TIMP3, all of which are involved in extracellular matrix processing, with PLAT and PLAU also contributing to fibrinolysis. Downregulated genes included CXCL5 and IL-8 and the adhesive glycoprotein THBS1 (thrombospondin-1). Expressions of ADAMTS1 and uPA proteins were assessed by immunhistochemistry in rabbit basilar arteries experiencing increased flow after bilateral carotid artery ligation. Both proteins were significantly increased when WSS was elevated compared with sham control animals. Our results indicate that very high WSS elicits a unique transcriptional profile in ECs that favors particular cell functions and pathways that are important in vessel homeostasis under increased flow. In addition, we identify specific molecular targets that are likely to contribute to adaptive remodeling under elevated flow conditions.
منابع مشابه
Metalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملCoronary Heart Disease Coronary Artery Wall Shear Stress Is Associated With Progression and Transformation of Atherosclerotic Plaque and Arterial Remodeling in Patients With Coronary Artery Disease
Background—Experimental studies suggest that low wall shear stress (WSS) promotes plaque development and high WSS is associated with plaque destabilization. We hypothesized that low-WSS segments in patients with coronary artery disease develop plaque progression and high-WSS segments develop necrotic core progression with fibrous tissue regression. Methods and Results—Twenty patients with coron...
متن کاملRole of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior.
Although the entire coronary tree is exposed to the atherogenic effect of the systemic risk factors, atherosclerotic lesions form at specific arterial regions, where low and oscillatory endothelial shear stress (ESS) occur. Low ESS modulates endothelial gene expression through complex mechanoreception and mechanotransduction processes, inducing an atherogenic endothelial phenotype and formation...
متن کاملDelayed Microvascular Shear Adaptation in Pulmonary Arterial Hypertension. Role of Platelet Endothelial Cell Adhesion Molecule-1 Cleavage.
RATIONALE Altered pulmonary hemodynamics and fluid flow-induced high shear stress (HSS) are characteristic hallmarks in the pathogenesis of pulmonary arterial hypertension (PAH). However, the contribution of HSS to cellular and vascular alterations in PAH is unclear. OBJECTIVES We hypothesize that failing shear adaptation is an essential part of the endothelial dysfunction in all forms of PAH...
متن کاملComputational analysis of the endothelial cell morphology due to distinct flow patterns
Endothelial cells (ECs) play a significant role in modulating arterial functions [1,2]. ECs are the interface between vessel wall and blood flow, and perform tasks such as the regulation of permeability and the sensing of fluid forces acting on the vessels’ walls. ECs have shown contrasting effects between laminar shear flow with a definite direction the “disturbed” shear seen at arterial branc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 302 8 شماره
صفحات -
تاریخ انتشار 2012